
© Copyright 2009 Kednos Enterprises 1

PL/I for OpenVMS and Tru64
WSIT and J2VMS: A Comparative Analysis
Tim E. Sneddon

WSIT and J2VMS: A Comparative Analysis..1
Introduction..2

Acknowledgements..2
Structures ..2
Constants ...5
Routines ..6
Conclusion ...9
For more information...10

© Copyright 2009 Kednos Enterprises 2

Introduction
The purpose of this article is to compare the two products:

• HP’s Web Services Integration Toolkit; and
• Kednos’ Java-to-VMS Toolkit.

These two products will, from now on, be referred to as WSIT and J2VMS, respectively. In
starting I should probably state that although I have attempted to remain somewhat
objective, I am biased. Considering that I am the current developer/maintainer of J2VMS I
do have a preference. That said, I am also an advocate of the belief that one should use
the best tool for the job. So in this article I intend to pick out the strengths and weaknesses
of both products.

Each product presents a method of calling native routines and manipulating native data
structures from within Java. However, the one fundamental difference is that WSIT has
been designed with the idea of native code being directly called from some sort of web
service. J2VMS aims to exist outside of that restriction and provide a toolkit for doing much
more.

So with that in mind I will begin by first looking at how both products present and
manipulate data structures, followed by the declaration and use of constants and finally,
the native calling interface.

Acknowledgements
 I would just like to acknowledge the WSIT developers and documenters. In some
cases I have borrowed their examples for this comparison. Also, Jim Brankin, the original
author of J2VMS.

Structures
Both WSIT and J2VMS support the concept of structures. However, they differ quite a bit in
the way they are presented to the developer. In both instances it is necessary to describe
the structures in a language other than Java. WSIT describes structures using IDL and
J2VMS uses SDL. Although it is not strictly necessary to use SDL, it is highly recommended.

For this example I will use the sellerData structure from the WSIT ‘stock’ sample. The
example below shows the C declaration of this structure.

const MAX_STRING = 20;

typedef struct _sellerData {
 char owner_name[MAX_STRING];
 unsigned int member_number;
 unsigned int balance_dollars;
 unsigned int number_shares_available;
} sellerData;

The snippet below shows the equivalent declarations in SDL for J2VMS. In this context SDL
refers to the Structure Definition Language. It is a language and compiler for generating
include files for many language variants from the one source file.

constant MAX_STRING equals 20;

aggregate sellerData structure typedef tag ”” prefix””;
 owner_name character length MAX_STRING;
 member_number longword unsigned;
 balance_dollars longword unsigned;
 number_shares_available longword unsigned;
end sellerData;

© Copyright 2009 Kednos Enterprises 3

A benefit of SDL is the language supports a number of primitive data types that cover those
usually found in a high level language. This is a feature not present in the IDL equivalent,
which can be seen in the following example. It is required that all primitive data types are
declared, as well as complex types. The following IDL example has been generated using
the OB2IDL tool.

<?xml version=”1.0” encoding=”UTF-8”?>
<OpenVMSInterface …>
 <Primitives>
 <Primitive Name = "unsigned int"
 Size = "4"
 VMSDataType = "DSC$K_DTYPE_LU"/>
 <Primitive Name = "AutoGen_FixedString19"
 Size = "19"
 VMSDataType = "DSC$K_DTYPE_T"
 NullTerminatedFlag = "0"
 FixedFlag = "1"/>
 </Primitives>
 <Typedefs>
 <Typedef Name = "sellerData"
 TargetName ="_sellerData"/>
 </Typedefs>
 <Structure Name = "_sellerData"
 TotalPaddedSize = "32">
 <Field Name = "owner_name"
 Type = "AutoGen_FixedString19"
 Offset = "0"/>
 <Field Name = "member_number"
 Type = "unsigned int"
 Offset = "20"/>
 <Field Name = "balance_dollars"
 Type = "unsigned int"
 Offset = "24"/>
 <Field Name = "number_shares_available"
 Type = "unsigned int"
 Offset = "28"/>
 </Structure>
</OpenVMSInterface>

IDL stands for Interface Definition Language. It is an XML formatted language that
describes the structures, constants, data types and the call interface to the WSIT code
generator. Unfortunately there are no tools to use these same declarations with other
languages and the developer is required to maintain multiple declarations of the same
structures. Re-generating these declarations can also become difficult if OBJ2IDL is unable
to resolve a data type itself. One advantage that IDL does have over SDL is the built-in
support for multi-dimensional arrays. SDL does not currently support this feature.

The following extract is the code generated by SDL that describes the data structure,
sellerData, to J2VMS.

public class stockdef {
 public static final int MAX_STRING = 20;
 public static final FieldDescriptor owner_name = new FieldDescriptor(0,0,0,0);
 public static final int s_owner_name = 20;
 public static final FieldDescriptor member_number = new FieldDescriptor(20,0,32,1);
 public static final FieldDescriptor balanace_dollars = new FieldDescriptor(24,0,32,1);
 public static final FieldDescriptor number_shares_available = new FieldDescriptor(28,0,32,1);
 public static final int s_sellerData = 32;
}

It shows each of the fields as a descriptor detailing the field’s position, size and signedness
in terms of bits and bytes as offset from the base of the structure. This is a concept
borrowed from the BLISS programming language. J2VMS presents all structures to the
developer using the vs.VmsStruct class. It provides a collection of methods for reading
and writing the data structure which, internally to vs.VmsStruct, is simply an array of
bytes. These field descriptors provide an address into the byte array making it possible for

© Copyright 2009 Kednos Enterprises 4

the developer to gain direct access to the data structure to fetch or store any value
necessary.

This implementation also allows for a far more generic interface. The only code that is
generated is the class containing the field definitions. It can be thought of as the
equivalent of a header file in a compiled language like PL/I or C. The class vs.VmsStruct
is part of the J2VMS class library.

The following extract shows a sample of the code generated by WSIT. Each structure is
represented as a single class and as such requires that a separate file be generated for
each one.

/**
 * _sellerData
 * This class represents the _sellerData structure. It contains all
 * of the accessor functions for the individual fields of this structure.
 * <p>
 * Please be aware that the encapsulated class, _sellerDataImpl, contains
 * all of serialization methods needed for this class, and are for internal
 * use only.
 */
public class _sellerData implements WsiV2Structure {
 …

/**
 * getOwner_name()
 * returns the owner_name value for this _sellerData.
 *

* @return the owner_name field of this structure
 */
 public String getOwner_name() {
 return wsiInnerStruct.getOwner_name();
 } // getOwner_name

/**
 * setOwner_name()
 *

* WARNING: This method should not be used by WSIT customers.
 * For Internal use only. To populate a structure field first
 * use the getOwner_name method to obtain a reference
 * then populate the returned object.
 *

* Sets the owner_name value for this _sellerData.
 *

* @param owner_name New value for the owner_name field.
 */
 public void setOwner_name (String owner_name) {
 wsiInnerStruct.setOwner_name(owner_name);
 } // setOwner_name
 …
}

Due to the requirement that WSIT generate classes that conform to the JavaBean
convention, all fields are represented as getter and setter methods. These methods in turn
manipulate private members that contain the stored value. This convention also prevents
the developer from creating structures that contain pointers to other structures or memory
regions. This can make it impossible to call code that requires access to linked lists or tree
structures.

The following two examples demonstrate how to load and fetch the owner_name field in
the sellerData structure. The first uses the WSIT environment.

_sellerData sellerData = new _sellerData();

sellerData.setOwner_name(“Hewitt Packard”);
String owner_name = sellerData.getOwner_name();

© Copyright 2009 Kednos Enterprises 5

The second uses J2VMS.

sellerData = new vs.VmsStruct(stockdef.s_sellerData);

sellerData.put(stockdef.owner_name, stockdef.s_owner_name, “Kedos Enterprises”);
String owner_name = new String(sellerData.get(stockdef.owner_name, stockdef.s_owner_name);

Constants
Constants are handled very differently in WSIT and J2VMS. Declaring a constant in the WSIT
IDL requires a special block of code that declares an enumeration and its values. Where
as using the SDL language to define the constants available to J2VMS is simply a single
declaration per constant. The following examples demonstrate the difference in
complexity between the two methods.

First the constants are declared in their respective languages.

WSIT definition in IDL J2VMS definition in SDL
<?xml version=”1.0” encoding=”UTF-9”?>
<OpenVMSInterface….>
 <Enumerations>
 <Enumeration Name=”TES_ANSWERS”
 ByteSize=”4”>
 <Enumerator Name=”TES_TRUE” ConstantValue=”1”/>
 <Enumerator Name=”TES_FALSE” ConstantValue=”0”/>
 </Enumerations>
 </Enumerations>
</OpenVMSInterface>

module TESDEF;

constant TES_TRUE equals 1;
constant TES_FALSE equals 0;

end_module TESDEF;

Once the respective code generators have been run the developer is presented with a
Java class for each. In the case of WSIT it is the JavaBean interface class. The following
extract shows the code generated for the IDL declaration above.

/**
 * This class represents the TES_ANSWERS Enum type.
 */
public final class TES_ANSWERS implements java.io.Serializable
{

private int m_value;
 /**
 * This property contains the value of TES_TRUE within the TES_ANSWERS Enum type.
 */
 public static final TES_ANSWERS TES_TRUE = new TES_ANSWERS(1);
 /**
 * This property contains the value of TES_FALSE within the TES_ANSWERS Enum type.
 */
 public static final TES_ANSWERS TES_FALSE = new TES_ANSWERS(0);

/**
 * Creates and initializes a TES_ANSWERS object with a given value.
 */
 private TES_ANSWERS (int value)
 {

m_value = value;
 }

/**
 * getValue() returns the value assigned to this enum.
 */
 public int getValue()
 {

return m_value;
 }
…
}

© Copyright 2009 Kednos Enterprises 6

Although they have been left out of the extract above, WSIT also generates toString and
equals methods. Where as SDL generates the following extract for use with J2VMS:

public class TESDEF {
 public static final int TES_TRUE = 1;
 public static final int TES_FALSE = 0;
}

As can be seen here, J2VMS does not create a whole class for accessing a named
constant. Instead it presents a read-only value that the developer can then use as they
see fit, avoiding all the extra work associated with instantiation and using getter and setter
methods to access a constant value. SDL also supports the declaration of named string
constants.

It is also worth noting that it is not possible to detect constant values in objects using the
OBJ2IDL utility. These need to be added by hand.

Routines
J2VMS and WSIT have rather different ways of supporting calls to native routines. This is
mostly due to the distributed nature of WSIT. J2VMS can certainly be called by a web
service, but a wrapper method needs to be written by the developer. This does have the
advantages of hiding several calls behind the one web service as well as being useable
from any type of Java web service.

To demonstrate the differences between calling mechanisms in WSIT and J2VMS the ‘math’
sample that is packaged with WSIT will be used. The following snippet shows the C function
prototypes for the routines prod and sum.

unsigned int sum (int number1, int number2);
unsigned int product (int number1, int number2);

Using the WSIT utility OBJ2IDL, it generates an IDL description similar to the following extract.
Only the sum routine is shown as both routines share the same arguments and return values.

<?xml version="1.0" encoding="UTF-8"?>
<OpenVMSInterface …>
 <Primitives>
 <Primitive Name = "unsigned int"
 Size = "4"
 VMSDataType =
"DSC$K_DTYPE_LU"/>
 <Primitive Name = "signed int"
 Size = "4"
 VMSDataType = "DSC$K_DTYPE_L"/>
 </Primitives>
 <Routines>
 <Routine Name = "sum"
 ReturnType = "unsigned int">
 <Parameter Name = "number1"
 Type = "signed int"
 PassingMechanism = "Value"
 Usage = "IN"/>
 <Parameter Name = "number2"
 Type = "signed int"
 PassingMechanism = "Value"
 Usage = "IN"/>
 </Routine>
 </Routines>
</OpenVMSInterface>

In this example it can be seen that, all primitive data types must again be declared and
the argument types and mechanisms are set. An issue that I noted when using OBJ2IDL
against a BASIC program was its inability to recognize a dynamic string, the only string

© Copyright 2009 Kednos Enterprises 7

format used by BASIC for automatically declared strings. This is yet another instance that
requires human intervention.

Once the developer has a correct IDL representation of their routines it is necessary to
generate the code that does the work. This is done using the IDL2CODE tool. This tool
generates a collection of files that represent the server-side wrapper and the client
interface. All up a total of 10 files for the prod and sum functions. These include build
procedures, native C code for a shareable image used to call the native routines plus Java
classes to expose the native routines to the Java/WSIT environment.

Displaying code snippets from all these files would not be a very productive use of space,
so I will skip that. However, I do encourage the reader to investigate this for themselves.
The samples that ship with WSIT can be generated with relative ease.

Using the auto-generated code it is now possible to write a class that calls the native
routine. This can be done either “in-process” or “out-of-process”. In-process refers to a
local call. Meaning that the native call occurs in the context (and address space) of the
running process. This type of call looks something like this:

import math.*;
import java.io.*;

public class mathcaller {
 /** Creates a new instance of Main */
 public mathcaller() {
 }

public static void main(String[] args) {
 try {
 mathImpl math = new mathImpl();
 int result;

result = math.sum(10, 15);
 System.out.println("Result = “ + result);
 } catch (Exception e) {
 System.out.println("Exception thrown");
 e.printStackTrace();
 }

}
}

Out-of-process refers to the web service call. This is done by calling the routine using the
Java Remote Method Invocation (RMI) interface. It looks something like this:

import math.*;
import java.io.*;
import com.hp.wsi.WsiIpcContext;

public class mathcaller {
 /** Creates a new instance of Main */
 public mathcaller() {
 }

public static void main(String[] args) {
 try {
 mathImpl math = new mathImpl(new WsiIpcContext());
 int result;

result = math.sum(10, 15);
 System.out.println("Result = “ + result);
 } catch (Exception e) {
 System.out.println("Exception thrown");
 e.printStackTrace();
 }

}
}

© Copyright 2009 Kednos Enterprises 8

In the case of J2VMS there are two ways that these routine can be declared and called
and in both instances the call is “in-process”. The first is similar to that of a header file. SDL
is used to declare the functions and generate a class that can then be used to call these
functions. The following SDL shows the declaration for sum.

module math;

entry sum parameter(
 longword unsigned named number1 in value,
 longword unsigned named number2 in value)
 returns longword unsigned;

end_module math;

SDL is then used to generate a class containing the following routine declaration. (It is
assumed, for this example, that the sum routine is contained within the MATH_RTL shareable
image.)

package org.tes;
import vs.VMSparam;
import vs.SystemCall;
import vs.FieldDescriptor;

public class MATH { // IDENT
 private static SystemCall nullclass;
 private static final String libname = "MATH_RTL";
 private static SystemCall sum_return;
 public static int sum(VMSparam[] args) {
 if (sum_return == nullclass) {
 sum_return = new SystemCall("SUM",libname);
 }

return sum_return.call(args);
 }
}

This then allows the developer to import the class into their Java program and call the
routine like so.

Import java.io.*;
import org.tes.MATH;

public class mathtest {
 private MATH math = new MATH();

public static void main(String[] args) {
 int result = math.sum(new VMSparams[] {
 new ByValue(10),
 new ByValue(15)
 });
 System.out.println(“Result = “ + result);
 }
}

Incidentally this is the method that J2VMS uses to provide its own version of the STARLET
libraries. This allows the developer to easily call their favourite LIB$ or SYS$ routines.

© Copyright 2009 Kednos Enterprises 9

The second, and simpler method, is much like adding a single external routine reference in
a native high level language. This is an advantage for simple programs that require maybe
one or two functions. This allows the developer to quickly declare the routine without
having to go down the path of generating a header file and adding it to their build
environment. This method is demonstrated in the following example.

public class mathtest2 {
 public static void main(String[] args) {
 SystemCall sum = new SystemCall("SUM", "MATH_RTL");

sum.call(new VMSparams[] {
 new ByValue(10),
 new ByValue(15)
 });
 }
}

Both of these examples show that the developer has ultimate control over the argument
passing mechanism. This is a feature that does not appear to be supported by WSIT which
locks the developer in with the wrapper code it generates. J2VMS passes all arguments
using the vs.VMSparams class. This class acts as a homed arguments list. This allows the
vs.SystemCall method call to work in a very similar manner to LIB$CALLG.

Using the J2VMS environment it is not possible to automatically generate an “out-of-
process” call method. It is left up to the developer to write the web service wrapper. This is
largely done because it leaves the developer free to utilize the native call interface exactly
how they want to. By writing their own wrappers, developers can include multiple calls in
one web service call. They can also hide some of the obscurity of native calls that does
not fit well into some of the web service interface standards available. It is certainly not
possible to build something like an item list using WSIT. However, this is something that
J2VMS has no problem with.

Conclusion
In conclusion I believe that both WSIT and J2VMS have their place. If you’re looking for a
quick Java RMI service, then WSIT is the way to go. However, J2VMS allows the developer
to accomplish so much more. J2VMS allows developers to easily code calls to their
favourite system services and run-time libraries to work with any type of web service they
like. Be it Java RMI, SOAP or a simple HTTP servlet. In fact, just a plain old Java application is
easily done as well. J2VMS can be used to easily develop software that fits all these
environments. There is also the added bonus that the SDL files used to describe the native
structures and routines for use with J2VMS are also perfectly useable with any other
language supported by SDL (almost all native language, if not all). This keeps everything in
the one place and reduces mistakes when updating many files describing the same thing.

Also worth mentioning is that all software required to use J2VMS runs on both OpenVMS
Alpha and I64 (and for the really depraved, the SDL backend also runs on OpenVMS VAX).
There is no need to ship objects to an OpenVMS I64 system to generate interface
definitions, as there is with WSIT and the OBJ2IDL tool which only runs on OpenVMS I64.
J2VMS is also much smaller, consisting of a shareable image and a Java archive.

I guess the last thing I should mention is that some of you may have noticed that I have
avoided the topic of ACMS entirely. This has been deliberate. I do not have a lot of
experience with ACMS and so don’t feel in a position to make comment on the usefulness
of WSIT or J2VMS in that sort of environment.

© Copyright 2009 Kednos Enterprises 10

For more information
Tim Sneddon can be contacted via email at tsneddon@kednos.com.

The software and documentation for HP’s Web Services Integration Toolkit (WSIT) can be
found at the following website:

• http://h71000.www7.hp.com/openvms/products/ips/wsit/index.html

All software and documentation (including an evaluation license) for Kednos’ Java-to-VMS
Toolkit (J2VMS) can be found at this website:

• http://www.kednos.com/kednos/Integration/Java

Details of the SDL language and the SDLEXT collection of backends can be found here:

• http://www.kednos.com/kednos/Integration/SDL

Further details of the JavaBean conventions can be found at the following resources:

• Wikipedia, JavaBean

o http://en.wikipedia.org/wiki/JavaBean

• Sun, Java SE Desktop Technologies – JavaBeans

o http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp

