
J2VMS: Exploiting OpenVMS from Java

User’s Guide & Release
Notes

This manual covers installation, trouble shooting and release information for
J2VMS, an interface for communicating between native OpenVMS and Java.

Revision/Update Information: This is a new manual.

Operating System and Version: OpenVMS Alpha Version 7.3-2

OpenVMS I64 Version 8.2

Software Version: J2VMS Version 1.3

Java for OpenVMS Version 1.2 or higher

November 2008

OpenVMS is a trademark of Hewlett-Packard Development Company. L.P.

Java is a trademark of Sun Microsystems. Inc.

Copyright ©2001-2002 Jim Brankin

Copyright ©2008 Kednos Enterprises

Contents

PREFACE vi

RELEASE NOTES ix

CHAPTER 1 GETTING STARTED 1–1

1.1 SOFTWARE PREREQUISITES 1–1

1.2 HARDWARE REQUIREMENTS 1–1

1.3 INSTALLATION 1–1

1.4 POST INSTALLATION 1–3

1.5 REMOVAL 1–4

CHAPTER 2 DEVELOPING AN APPLICATION 2–1

2.1 INCLUDES 2–1

2.2 EXTERNAL ROUTINES 2–1

2.3 ARGUMENT PASSING MECHANISMS 2–2
2.3.1 Passing Arguments By Descriptor 2–4
2.3.2 Passing Arguments By Reference 2–6
2.3.3 Passing Arguments By Value 2–8

2.4 CALLING A NATIVE ROUTINE 2–8

2.5 STRUCTURE DECLARATION 2–9

iii

Contents

2.6 STRUCTURE MANIPULATION 2–11
2.6.1 Cmem 2–13

2.7 OPENVMS STATUS CODES 2–14

CHAPTER 3 TROUBLESHOOTING 3–1

3.1 JAVA.LANG.UNSATISFIEDLINKERROR 3–1

3.2 JAVA.LANG.NOCLASSDEFFOUNDERROR 3–1

3.3 CANNOT RESOLVE SYMBOL 3–1

EXAMPLES
1–1 J2VMS Product Installation 1–3
1–2 J2VMS Product Removal 1–4
2–1 Passing a java.lang.String Object by Descriptor 2–4
2–2 Receiving String Data From A Called Routine 2–5
2–3 Copying A java.lang.String Object to Descriptor 2–7
2–4 Calling LIB$CHAR from Java 2–9
2–5 Calling LIB$CHAR from Java Using vs.LibRoutines 2–9
2–6 Allocating a FAB in Java 2–10
2–7 Allocating a FAB in C 2–10
2–8 Allocating a FAB in BLISS 2–11
2–9 String Descriptor Declaration in Java 2–12
2–10 String Descriptor Declaration in Java 2–12
2–11 String Descriptor Declaration in PL/I 2–12
2–12 vs.Cmem Usage Demonstration 2–13
2–13 Using $VMS_STATUS_SUCCESS 2–15

FIGURES
2–1 String Descriptor Layout 2–12

iv

Contents

TABLES
1–1 J2VMS Installation Options 1–1
2–1 Summary of Native Usage of Java Objects Passed by Descriptor 2–6
2–2 Summary of Native Usage of Java Objects Passed by Descriptor 2–6
2–3 Java Classes And Primitive Types That Can Be Passed By Value 2–8

v

Preface

Manual Objectives
This manual attempts to describe, as completely as possible, the J2VMS
calling interface.

Intended Audience
This manual is designed for programmers who are developing Java
applications that must communicate directly with OpenVMS System
Services and Run-Time Libraries (including customer libraries).

It is expected that readers will have a working knowledge of software
design and development. It is encouraged that the reader also explore
some of the Java documentation pointers included below.

Document Structure
This manual contains the following chapters

• Chapter 1 covers installation and removal of the software.

• Chapter 2 describes the many parts of J2VMS and how to use them

• Chapter 2 offers troubleshooting solutions to some common issues.

Associated Documents
The following documents may be useful when using J2VMS.

Java2 1.3.1 SE API Specification

HP OpenVMS RTL Library (LIB$) Manual: LIB$FIND_IMAGE_
SYMBOL

J2VMS V1.3 API Specification

Optimizing Java Technology Software Performance on HP OpenVMS.

BLISS Language Reference Manual

Guide to HP Structure Definition Language

On-Line Examples

A collection of examples programs are present on line in
SYS$COMMON:[SYSHLP.EXAMPLES.J2VMS]. (This device-directory
specification may have been given the logical name J2VMS$EXAMPLES
during installation of the J2VMS software kit.)

vi

Preface

Reader’s Comments
Kednos welcomes your comments on this manual. Please send any
comments, corrections, etc. to either of the following addresses:

Email pli-support@kednos.com

Postal Mail Kednos Enterprises
Suite 7, 220 Country Club Drive
Pacific Grove, CA 93950

vii

Release Notes

This section contains release information on J2VMS. Release information
is necessary for gaining the best results from J2VMS. It is recommended
that all users read this information.

J2VMS Version V1.3

Overview of Changes
J2VMS Version 1.3 contains the following enchancements and fixes:

• There is now support for passing a java.lang.String object by
descriptor. However, it should be noted that there is no support
(nor will there be in the future) for returning data via a String object.
This is a restriction imposed by Java, not J2VMS.

• It is now possible to pass a java.lang.StringBuffer by descriptor. A
StringBuffer object can be used to pass string data to a native routine
as well as receive it from the called routine. Passing a StringBuffer
by descriptor results in the native routine receiving a dynamic string
descriptor. It is not currently possible to pass a StringBuffer by
reference. However, support will be included in a future release.

• There is now support for passing read-only copies of primitive types
and java.lang.String objects by reference.

• The class vs.SystemServices now includes a declaration for the System
Service $PARSE.

• The STARLET module STS now includes $VMS_STATUS_* methods
equivalent to the macros of the same name present in the C language
environment.

• J2VMS is now distributed in a PCSI software product kit.

• The program that generates the STARLET library provided by J2VMS
has been improved to generate modules that more accurately mirror
those provided by native high level languages. It is possible, though
unlikely, that some fields or constants may have moved into a different
module. This will require that the source code be changed to match
the new definitions.

• The J2VMS STARLET library (package vs.starlet now includes
normalised names. As well as names appearing in their original
case, upper and lower case names are also provided.

• This release includes a complete API specification not present in past
releases. This is included in the software product kit as well as being
accessible online at the Kednos website.

ix

Release Notes

Overview of Restrictions
J2VMS Version 1.3 contains the following restrictions:

• There is currently no support for passing Java methods as callback or
AST service routines. This is planned for a future release.

• It is not currently possible to pass a java.lang.StringBuffer object by
reference. This will be added in a future release.

• It is not currently possible to easily regenerate the STARLET library
on a target system and so the mechanism to do so is not provided.
This will change in a future release.

x

1 Getting Started

This chapter covers the installation and removal of J2VMS including
software and hardware dependencies.

1.1 Software Prerequisites
The following software is required to successfully install and use J2VMS:

• OpenVMS Alpha Version V7.3-2 or higher; or

• OpenVMS I64 Version V8.2 or higher

• Java Platform, Standard Edition, Development Kit (JDK) V1.2 or
higher.

It is also recommended that all available software patches be applied to
these products prior to attempting installation.

For improved performance later versions of the JDK are also
recommended. Later versions include support for FastVM and other
significant performance improvements.

1.2 Hardware Requirements
The only hardware requirement is that the system be either an Alpha
or Integrity system as J2VMS (like Java) is only available on OpenVMS
Alpha and I64.

Be aware that Java is particullarly resource hungry so older, slower
machines will often perform poorly, particularly in interactive
environments. The general rule of thumb is, the more memory and
the faster the CPU the better Java applications will perform. There
are some documents available that offer hints and tips for performance
improvements. Details of these can be found under the section Associated
Documents.

1.3 Installation
The J2VMS software product kit presents a number of options to the
installer to control exactly what is installed. Table 1–1 describes each of
these options and their defaults. Example 1–1 shows an example of an
installation of the J2VMS product.

Table 1–1 J2VMS Installation Options

Description Default

User Guide & Release Notes in PostScript format Yes

1–1

Getting Started

Table 1–1 (Cont.) J2VMS Installation Options

Description Default

User Guide & Release Notes in PDF format Yes

User Guide & Release Notes in HTML format Yes

J2VMS API Specification Yes

Example programs Yes

1–2

Getting Started

Example 1–1 J2VMS Product Installation

$ PRODUCT INSTALL J2VMS

The following product has been selected:
KEDNOS VMS J2VMS V1.3 Layered Product

Do you want to continue? [YES] YES

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

KEDNOS VMS J2VMS V1.3: Java Interface to Native OpenVMS

Copyright © 2001-2002 Jim Brankin, 2008 Kednos Enterprises

Kednos Enterprises

This product uses the PAK: J2VMS

Do you want the defaults for all options? [YES] NO

Install J2VMS Documentation? [YES] YES

Do you want the defaults for all suboptions? [YES] NO

Install the J2VMS V1.3 API Specification [YES] YES

Install J2VMS User Guide & Release Notes in HTML format? [YES] YES

Install J2VMS User Guide & Release Notes in PDF format? [YES] YES

Install J2VMS User Guide & Release Notes in PostScript format? [YES] YES

Install example programs? [YES] YES

Do you want to review the options? [NO] NO

Execution phase starting ...

The following product will be installed to destination:
KEDNOS VMS J2VMS V1.3 DISK$AXP082:[VMS$COMMON.]

Portion done: 0%...10%...20%...30%...70%...90%...100%

The following product has been installed:
KEDNOS VMS J2VMS V1.3 Layered Product

KEDNOS VMS J2VMS V1.3: Java Interface to Native OpenVMS

Relase Notes are included in the user guide.

J2VMS release notes are included in the User Guide & Release Notes
manual. To install these locally ensure that at least one documentation
option is selected. Otherwise, the manual can be found at the Kednos
website.

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
@SYS$STARTUP:J2VMS$STARTUP.COM

1.4 Post Installation
Once the J2VMS software product kit has been installed it is advisable
to add the startup procedure, SYS$STARTUP:J2VMS$STARTUP.COM to
the system startup prodcedure. Althought it is not necessary in this kit, it
may become so in a later release. It als defines the J2VMS$EXAMPLES
logical and installs the SYS$LIBRARY:J2VMS$SHR.EXE image.

1–3

Getting Started

1.5 Removal
Removal of the software product is a case of using the PCSI PRODUCT
REMOVE command. There is no provision in this release for clean up
of the API Specification in this kit (it is expected this will change in a
future release). If the API spec was unpacked it will have to be removed
manually.

Example 1–2 demonstrates removal of the J2VMS product.

Example 1–2 J2VMS Product Removal

$ PRODUCT REMOVE J2VMS

The following product has been selected:
KEDNOS VMS J2VMS V1.3 Layered Product

Do you want to continue? [YES] YES

The following product will be removed from destination:
KEDNOS VMS J2VMS V1.3 DISK$AXP082:[VMS$COMMON.]

Portion done: 0%...40%...50%...60%...70%...80%...100%

The following product has been removed:
KEDNOS VMS J2VMS V1.3 Layered Product

1–4

2 Developing An Application

This chapter covers the different parts of the J2VMS interface and how It
has been deliberately written to draw comparisons between native coding
and coding in Java using J2VMS. The intention is that it will be easier
to understand for someone who has more background in native languages
such as PL/I, BASIC, C and Pascal.

2.1 Includes
The first item to cover is how to make the J2VMS interface available
to a Java program. It is quite simple and is tackled in two steps.
The first is configuring the Java classpath. Without this the Java
compiler and interpreter will not be able to find the J2VMS classes.
The example below demonstrates how to include that J2VMS library in
the JAVA$CLASSPATCH logical.

$ DEFINE JAVA$CLASSPATH SYS$LIBRARY:J2VMS$VS.JAR

Another way to configure the Java classpath is to include it on the
command line as shown in this example:

$ java -classpath "/sys$library/j2vms$vs.jar:..." ...

For more information on configuring the Java classpath, please consult the
relevant Java for OpenVMS user guide.

Once the compiler and interpreter can find the J2VMS class library
the relevant classes need to be included in the source module. It is
recommended that the base vs package be included in it’s entirety. It
it not normally recommended to include external packages in this way.
However, the vs package is not made up of many classes.

When it comes to including the different modules within STARLET it is
best to only include those classes that are necessary. There are many
modules in the vs.starlet package. This will cause unnecessary memory
usage and increase compile and load time significantly.

The example below demonstrates the best way to include the vs package
and the STARLET modules SS and STS.

import vs.*;
import vs.starlet.SS;
import vs.starlet.STS;

2.2 External Routines
In order for J2VMS to call native routines they first need to be declared.
This can be likened to declaring a routine in C with the extern attribute
or declaring an external entry in PL/I. The difference in Java is that there
is no linker to process the external declarations and locate the relevant

2–1

Developing An Application

shared image. Therefore the caller needs to know which shareable image
the routines exists in.

The external declaration is constructed using the SystemCall. class.
This class is a simplified method for calling the LIB$ Run-Time Library
routine LIB$FIND_IMAGE_SYMBOL (sometimes referred to as LIB$FIS).
LIB$FIND_IMAGE_SYMBOL dynamically loads shareable images by
looking up symbols.

Declaring An External Reference to LIB$PUT_OUTPUT

The following example below demonstrates how to declare the external
routine LIB$PUT_OUTPUT (found in SYS$LIBRARY:LIBRTL.EXE) in
Java. It also includes examples in C, PL/I and BASIC for comparison.

1 SystemCall lib$put_output = new SystemCall("LIB$PUT_OUTPUT", "LIBRTL");

The same declaration in C

2 extern int lib$put_output();

The same declaration in PL/I

3 declare lib$put_output entry(any, any) returns(fixed binary(31));

The same declaration in BASIC

4 external integer function lib$put_output

The Structure Definition Language (SDL) can be used to generate external
routine declarations also. These classes can then be used in the same way
as the classes vs.SystemServices and vs.LibRoutines. These classes are
covered further in Section 2.4.

2.3 Argument Passing Mechanisms
Before discussing the actual call mechanism between J2VMS and native
OpenVMS it is important to first cover argument passing. J2VMS provides
a set of classes that allow the caller to pass arguments in the common
language environment, just as they would a native language. These
classes are:

• vs.ByDesc - by descriptor

• vs.ByRef - by reference

• vs.ByVal - by value

Passing arguments using J2VMS can be likened to constructing an
argument list for the LIB$ Run-Time Library function LIB$CALLG.
An array of pointers and/or values is constructed and passed to the
target routine using LIB$CALLG as a catalyst (originally high level
language access to the VAX CALLG instruction). J2VMS is quite similar.
However, it has it’s minor differences mostly related to the object oriented
architecture of Java.

2–2

Developing An Application

J2VMS argument lists are constructed as an array of objects from the
abstract class vs.VMSparam. Unlike an argument list destined for
LIB$CALLG there is no need for the argument count in the first element
as the size of the array is known, thanks to Java. This means that all
elements in the argument list detail arguments. Each element consists
of an argument mechanism class (shown above) that informs J2VMS as
to exactly how it’s own argument is to be passed. When J2VMS actually
performs the call it determines the mechanism by comparing class types
and then allocating internal storage as necessary. Copying between
internal storage and Java class storage before and after the actual native
call.

vs.VMSparam Argument List for LIB$CHAR

1
StringBuffer result = new StringBuffer();
Byte code = new Byte((byte) 65);
vs.VMSparam arglst = new VMSparam[] { new ByDesc(result),

new ByRef(code) };

The LIB$ Run-Time Library routine LIB$CHAR accepts two arguments.
The first is a result string, passed by descriptor, and the second is a byte
containing an 8-bit ASCII character code.

2
declare arglst(2) pointer;
declare 1 result,

2 dsc$w_length fixed binary(15),
2 dsc$b_dtype fixed binary(7),
2 dsc$b_class fixed binary(7),
2 dsc$a_pointer pointer;

declare result_str character(dsc$w_length) based(dsc$a_pointer);
declare code fixed binary(7);

result.dsc$w_length = 0;
result.dsc$b_dtype = DSC$K_DTYPE_T;
result.dsc$b_class = DSC$K_CLASS_D;
result.dsc$a_pointer = null();

arglst(1) = addr(result);
arglst(2) = addr(code);

The above snippet of PL/I code attempts to demonstrate the actions of the
code above in a native language. In this example the string descriptor for
result is constructed explictly to show what J2VMS does internally when
dealing with an argument passed by descriptor.

The following sections cover each of the mechanisms in close. These
sections must be read carefully as there are one or two caveats that
must be observed. For full documentation of what data types each
passing mechanism class can deal with, please consult the J2VMS API
Specification. This documentation ships with the software product and
is available at the Kednos website. See Associated Documents for more
details.

2–3

Developing An Application

2.3.1 Passing Arguments By Descriptor
The class vs.ByDesc is used to inform J2VMS that it’s argument should
be passed by descriptor. Many data types can be passed by descriptor.
However, probably the most used are vs.Cmem, java.lang.StringBuffer and
byte[]. Both vs.Cmem and byte[] result in fixed length descriptors of type
DSC$K_CLASS_S. java.lang.StringBuffer is a special case. It results in a
dynamic string descriptor with a type of DSC$K_CLASS_D. Prior to a call
the content of the StringBuffer object is copied into a dynamic descriptor.
Then following the return from the call the string descriptor is copied
back into the StringBuffer object so the result it can be used in the Java
environment.

All objects and arrays passed by descriptor can be used to receive results,
with one exception. The vs.ByDesc constructor for the java.lang.String
object cannot be used to receive a result. This is a restriction imposed by
Java, not J2VMS. There is no public method for updating the contents of
a String object. In the case where a string object is passed by descriptor it
results in a new byte array being allocated and the contents of the String
object being copied into it. The example below demonstrates what actually
happens.

Example 2–1 shows a literal java.lang.String object being passed to
the LIB$ Run-Time Library routine LIB$PUT_OUTPUT. This example
demonstrates the convenience of being able to pass string literals and have
them built "in the argument list".

Example 2–1 Passing a java.lang.String Object by Descriptor

lib.lib$put_output(new VMSparam[] {
new ByDesc("hello, " + "world")

});

However, it is not possible to receive data into a String
object. Example 2–2 is a complete program that can be
copied and executed to demonstrate the restriction. This
example is also available from the Kednos website, or online at
SYS$COMMON:[SYSHLP.EXAMPLES.J2VMS]GET2.JAVA.

Table 2–1 summarises the native usage of Java object types passed by
descriptor.

2–4

Developing An Application

Example 2–2 Receiving String Data From A Called Routine

import java.lang.*;
import vs.*;

public class get2
{

public static void main(String[] args)
{

Short result_len = new Short((short) 0);
String result1 = new String();
StringBuffer result2 = new StringBuffer();
LibRoutines lib = new LibRoutines();

System.out.println("Storage before any calls to LIB$PUT_OUTPUT");
System.out.println(" * result_len = " + result_len);
System.out.println(" * result1 = <" + result1 + ">");
System.out.println(" * result2 = <" + result2 + ">");

lib.lib$get_input(new VMSparam[] {
new ByDesc(result1),
new ByDesc("String result>> "),
new ByRef(result_len)

});

System.out.println("Storage after first call to LIB$PUT_OUTPUT");
System.out.println(" * result_len = " + result_len);
System.out.println(" * result1 = <" + result1 + ">");
System.out.println(" * result2 = <" + result2 + ">");

lib.lib$get_input(new VMSparam[] {
new ByDesc(result2),
new ByDesc("String result>> "),
new ByRef(result_len)

});

System.out.println("Storage after second call to LIB$PUT_OUTPUT");
System.out.println(" * result_len = " + result_len);
System.out.println(" * result1 = <" + result1 + ">");
System.out.println(" * result2 = <" + result2 + ">");

}
}

2–5

Developing An Application

Table 2–1 Summary of Native Usage of Java Objects Passed by
Descriptor

Java Class/Primitive Type Descriptor Class Writable

byte[] Static (DSC$K_CLASS_S) Yes

int[] Static (DSC$K_CLASS_S) Yes

long[] Static (DSC$K_CLASS_S) Yes

short[] Static (DSC$K_CLASS_S) Yes

java.lang.Byte Static (DSC$K_CLASS_S) Yes

java.lang.Integer Static (DSC$K_CLASS_S) Yes

java.lang.Long Static (DSC$K_CLASS_S) Yes

java.lang.Short Static (DSC$K_CLASS_S) Yes

java.lang.String Static (DSC$K_CLASS_S) No

java.lang.StringBuffer Dynamic (DSC$K_CLASS_D) Yes

vs.Cmem Static (DSC$K_CLASS_S) Yes

vs.VmsStruct Static (DSC$K_CLASS_S) Yes

Note: There is currently no support for passing arrays by descriptor in
the same way as other native high level languages. Currently all
arrays of primitive types are treated as byte[] arrays. However,
support is planned in a future release.

2.3.2 Passing Arguments By Reference
The J2VMS class vs.ByRef is used to pass arguments by reference (by
address). It can be used to pass many data types. Table 2–2 summarises
each of the supported types and their usage by native routines.

Table 2–2 Summary of Native Usage of Java Objects Passed by
Descriptor

Java Class/Primitive Type Writeable

byte No

int No

long No

short No

byte[] Yes

int[] Yes

long[] Yes

short[] Yes

java.lang.Byte Yes

java.lang.Integer Yes

java.lang.Long Yes

2–6

Developing An Application

Table 2–2 (Cont.) Summary of Native Usage of Java Objects Passed by
Descriptor

Java Class/Primitive Type Writeable

java.lang.Short Yes

java.lang.String No

vs.Cmem Yes

vs.VmsStruct Yes

Note: There is currently no support for passing a java.lang.StringBuffer
object by reference. However, this will appear in a future release
of J2VMS.

All object and arrays passed by reference can be used to receive results.
There is support for passing primitive types by reference. However, these
are convenience constructors and cannot be used to receive a result.
This is much the same problem as passing a java.lang.String object by
descriptor (seen in the Section 2.3.1). Example 2–3 demonstrates the
usefulness of being able to pass primitive types and java.lang.String
objects as routine inputs.

Example 2–3 Copying A java.lang.String Object to Descriptor

import java.lang.*;
import vs.*;
import vs.starlet.DSC;

public class desc
{

public static void main(String args[])
{

LibRoutines lib = new LibRoutines();
VmsStruct descriptor = new VmsStruct(DSC.DSC$C_D_BLN);
String buffer = "hello, world";

descriptor.put(DSC.DSC$W_MAXSTRLEN, 0);
descriptor.put(DSC.DSC$B_DTYPE, DSC.DSC$K_DTYPE_T);
descriptor.put(DSC.DSC$B_CLASS, DSC.DSC$K_CLASS_D);
descriptor.put(DSC.DSC$A_POINTER, 0);

lib.lib$scopy_r_dx(new VMSparam[] {
new ByRef(buffer.length()),
new ByRef(buffer),
new ByRef(descriptor)

});

lib.lib$put_output(new VMSparam[] {
new ByRef(descriptor)

});
}

}

2–7

Developing An Application

2.3.3 Passing Arguments By Value
The J2VMS class vs.ByVal is used to pass arguments by value. Table 2–3
lists the supported argument types passed by value.

Table 2–3 Java Classes And Primitive Types That Can Be Passed By
Value

Java Class/Primitive Type

byte
int
long
short
java.lang.Byte

java.lang.Integer
java.lang.Long
java.lang.Short

Arguments passed by value can be altered by called routines. However, as
with compiled languages the results are lost on return.

2.4 Calling a Native Routine
Calling the native routine is done by passing an array of vs.VMSparam
objects to the call method of the vs.SystemCall.

Example 2–4 is a complete example that builds on the previous sections
to declare an external routine reference, construct an argument list and
finally call the native routine.

There are times when it is not convenient to declare many routines
individually within each method that uses them. Libraries of external
routine references can be gather in a class. The most popular examples
of this are probably the vs.SystemServices and vs,LibRoutines classes.
Similar libraries can also be constructed using the Java language backend
for the Structure Definition Language (SDL) compiler.

Example 2–5 shows the code in Example 2–4 after it has been rearranged
to take advantage of the vs.LibRoutines class.

As can be seen in Example 2–5 there is no longer any need to call the
call method. The name of the routine is now used to make the call. The
advantage of using the vs.SystemServices and vs.LibRoutines classes or
classes generated from SDL is that it is now possible to call a range of
routines present in the class.

2–8

Developing An Application

Example 2–4 Calling LIB$CHAR from Java

import java.lang.*;
import vs.*;

public class chr
{

public static void main(String[] args)
{

/* Declare result storage, essentailly a dynamic string
* string descriptor.
*/

StringBuffer result = new StringBuffer();

/* Declare external reference to routine LIB$CHAR.
*/

SystemCall lib$char = new SystemCall("LIB$CHAR", "LIBRTL");

/* Call the native routine. Here the argument list is constructed
* inline so that it looks more like a regular call.
*/

lib$char.call(new VMSparam[] {
new ByDesc(result),
new ByRef(65)

});

/* Output the result received from LIB$CHAR.
*/

System.out.println("ASCII 65 = " + result);
}

}

Example 2–5 Calling LIB$CHAR from Java Using vs.LibRoutines

import java.lang.*;
import vs.*;

public class chr2
{

public static void main(String[] args)
{

/* Declare result storage, essentailly a dynamic string
* string descriptor.
*/

StringBuffer result = new StringBuffer();

/* "Include" vs.LibRoutines. This is similar to C where the
* following might be used to include all routines from
* SYS$LIBRARY:LIBRTL.EXE.
*/

LibRoutines lib = new LibRoutines();

/* Call the native routine. Here the argument list is constructed
* inline so that it looks more like a regular call.
*/

lib.lib$char(new VMSparam[] {
new ByDesc(result),
new ByRef(65)

});

/* Output the result received from LIB$CHAR.
*/

System.out.println("ASCII 65 = " + result);
}

}

2.5 Structure Declaration

2–9

Developing An Application

The Java language has support for classes. These can be likened to
OpenVMS native structures. However, as far as physical storage and
arrangement there is very little that is similar. It is not possible to easily
and uniformly map a native OpenVMS data structure to a Java class.
Some element of manual human intervention is required. This is why
J2VMS provides the vs.VmsStruct and vs.FieldDescriptor classes. With
the use of these two classes access to OpenVMS data structures becomes
simple uniform and easy to understand.

Both these classes are based on the mechanism used by the BLISS system
programming language for accessing structures. To read further on the
BLISS language please see the Associated Documents section.

Structures are allocated internally as an array of bytes and accessed
through the class vs.VmsStruct. The target byte array can be allocated by
the class constructor or supplied by the caller. From this point forward
it is now possible to manipulate the byte array using the put and get
methods of the VmsStruct class.

Example 2–6 demonstrates how to allocate storage for an Record
Management System (RMS) File Access Block (FAB) structure in Java.

Example 2–6 Allocating a FAB in Java

import vs.*;
import vs.starlet.FAB;

.

.

.
VmsStruct fab = new VmsStruct(FAB.FAB$S_FABDEF);

Example 2–7 demonstrates how to allocate the same structure in the C
language.

Example 2–7 Allocating a FAB in C

#include <fabdef.h>
.
.
.

struct FAB fab;

Lastly, Example 2–8 demonstrates how to declare a FAB in the BLISS
language. The BLOCK attribute can be thought of as the equivalent of the
Vs.VmsStruct constructor.

2–10

Developing An Application

Example 2–8 Allocating a FAB in BLISS

library ’sys$library:starlet’;
.
.
.

local
fab : block[FAB$S_FABDEF, byte];

2.6 Structure Manipulation
Structures allocated with the vs.VmsStruct class can be manipulated
using the get and put methods. These methods are used, combined with
vs.FieldDescriptor objects, to alter specific regions of the byte array target
of the VmsStruct object. Each object declares a storage area described in
terms of bit and byte offsets from the beginning of a byte array.

Although cumbersome and a little involved, vs.FieldDescriptor objects
do allow complete access to any part of the byte array managed by
a VmsStruct class. It is recommended that the Structure Definition
Language (SDL) be used to declare data structures that can then be
translated into FieldDescriptor declarations which can be used with
J2VMS.

For further detail on using the SDL language and compiler as well
as details of the J2VMS extension to the SDL compiler, see the
Associated Documents section at the beginning of this manual.

Figure 2–1 describes that layout of a string descriptor in memory.
Example 2–9 demonstrates how this data structure is declared using
vs.FieldDescriptor objects.

2–11

Developing An Application

Figure 2–1 String Descriptor Layout

DSC$W_LENGTHDSC$B_DTYPEDSC$B_CLASS 0

DSC$A_POINTER 4

Example 2–9 String Descriptor Declaration in Java

import vs.FieldDescriptor;

public class DSCDEF
{

public static final FieldDescriptor dsc$w_length =
new FieldDescriptor(0, 0, 16, 0);

public static final FieldDescriptor dsc$b_dtype =
new FieldDescriptor(2, 0, 8, 0);

public static final FieldDescriptor dsc$b_class =
new FieldDescriptor(3, 0, 8, 0);

public static final FieldDescriptor dsc$a_pointer =
new FieldDescriptor(4, 0, 32, 0);

}

Example 2–10 demonstrates the same declaration in BLISS. It is easy
when comparing these examples to see the heritage of the J2VMS
method.

Example 2–10 String Descriptor Declaration in Java

field dscdef =
set

dsc$w_length = [0, 0, 16, 0],
dsc$b_dtype = [2, 0, 8, 0],
dsc$b_class = [3, 0, 8, 0],
dsc$b_pointer = [4, 0, 32, 0]

tes;

Lastly, Example 2–11 shows the same declaration again. However, this
time it is done using PL/I.

Example 2–11 String Descriptor Declaration in PL/I

declare 1 dscdef based,
2 dsc$w_length fixed binary(15),
2 dsc$b_dtype fixed binary(7),
2 dsc$b_class fixed binary(7),
2 dsc$a_pointer pointer;

2–12

Developing An Application

2.6.1 Cmem
The J2VMS class vs.Cmem is an interface to the C Run-Time Library
memory allocation and deallocation routines malloc and free. This class
is particularly useful when it comes to allocate storage that must evade
the Java garbage collector. An instance of this might be to allocate storage
that is referenced by a structure.

Example 2–12 demonstrates a common use of the Cmem class. In this
example Cmem is used to allocate storage for a NAML block that can
then be referenced by a FAB block. The output storage for the resultant
filename is also a Cmem class.

Example 2–12 vs.Cmem Usage Demonstration

import java.lang.*;
import java.lang.reflect.Array;
import vs.*;
import vs.starlet.FAB;
import vs.starlet.NAM;
import vs.starlet.SS;
import vs.starlet.STS;

public class parse
{

public static void main(String[] args)
{

VmsStruct fab = new VmsStruct(FAB.FAB$S_FABDEF);
VmsStruct naml = new VmsStruct(NAM.NAML$S_NAMLDEF);
Cmem cfab = new Cmem(FAB.FAB$S_FABDEF);
Cmem cnaml = new Cmem(NAM.NAML$S_NAMLDEF);
Cmem long_filename;
Cmem long_result = new Cmem(NAM.NAML$C_MAXRSS);
int sstatus = SS.SS$_NORMAL;
SystemServices sys = new SystemServices();

if ((Array.getLength(args) <= 0)
|| args[0].toUpperCase().startsWith("-H"))

{
System.out.println("Usage:");
System.out.println(" [java-cmd] parse -h | <filename>");
return;

}

/* Allocate memory region for input filename and copy it in.
*/

long_filename = new Cmem(args[0].length());
long_filename.copyin(args[0]);

/* Initialize tha NAML...
*/

naml.put(NAM.NAML$B_BID, NAM.NAML$C_BID);
naml.put(NAM.NAML$B_BLN, NAM.NAML$K_BLN);
naml.put(NAM.NAML$L_LONG_FILENAME, long_filename.getPeer());
naml.put(NAM.NAML$L_LONG_FILENAME_SIZE, long_filename.length());
naml.put(NAM.NAML$L_LONG_RESULT, long_result.getPeer());
naml.put(NAM.NAML$L_LONG_RESULT_ALLOC, long_result.length());

Example 2–12 Cont’d on next page

2–13

Developing An Application

Example 2–12 (Cont.) vs.Cmem Usage Demonstration

/* Initialize the FAB...
*/

fab.put(FAB.FAB$B_BID, FAB.FAB$C_BID);
fab.put(FAB.FAB$B_BLN, FAB.FAB$K_BLN);
fab.put(FAB.FAB$W_IFI, 0);
fab.put(FAB.FAB$L_FNA, -1);
fab.put(FAB.FAB$B_FNS, 0);
fab.put(FAB.FAB$L_NAM, cnaml.getPeer());

/* Copy the NAML block into the memory storage.
*/

cnaml.copyin(naml);

/* Now we do the parse...
*/

sstatus = sys.sys$parse(new VMSparam[] {
new ByRef(fab),
new ByVal(0),
new ByVal(0)

});
if (!STS.$VMS_STATUS_SUCCESS(sstatus))
{

sys.sys$exit(new VMSparam[] {
new ByVal(sstatus)

});
}

/* Copy the NAML from the Cmem object back to the VmsStruct
*.object.

cnaml.copyout(naml);

System.out.println("Original specification = "
+ long_filename.copyout());

System.out.println("Resultant specification = "
+ long_result.copyout((int)naml.get(NAM.NAML$L_LONG_RESULT_SIZE))

}
}

2.7 OpenVMS Status Codes
J2VMS provides a set of methods in the STARLET class STS for
accessing the different fields of a status code within a longword. These
methods are based on the C macros provided the STSDEF module of
SYS$LIBRARY:SYS$STARLET_C.TLB. For further documentation on the
available methods please consult the J2VMS API Specification. A pointer
to this documentation can be found under Associated Documents.

Example 2–13 demonstrates probably the most common use of the
$VMS_STATUS_SUCCESS method.

Note: All methods that return a field of only one bit convert their results
to boolean. This makes it easier to use these methods as an if
expression. All other methods return int results.

2–14

Developing An Application

Example 2–13 Using $VMS_STATUS_SUCCESS

import java.io.*;
import java.lang.*;
import vs.*;
import vs.starlet.SS;
import vs.starlet.STS;

public class status
{

public static void main(String[] args)
{

int sstatus = SS.SS$_ACCVIO;

if (STS.$VMS_STATUS_SUCCESS(sstatus))
System.out.println("Status indicates success!");

else
System.out.println("Status indicates failure!");

}
}

2–15

3 Troubleshooting

The following section covers common issues that are encountered by usesrs
of J2VMS.

3.1 java.lang.UnsatisfiedLinkError
This error indicates a failure in the Java method
java.lang.System.loadLibrary. This method is used for loading native
libraries in Java. It is not the method used by vs.SystemCall to load
libraries. See Section 3.2 for more information on that topic.

If the error looks similar to:

java.lang.UnsatisfiedLinkError: no J2VMS$SHR in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1578)
at java.lang.Runtime.loadLibrary0(Runtime.java:788)
at java.lang.System.loadLibrary(System.java:834)
at vs.VmsStruct.<clinit>(VmsStruct.java:81)
at parse.main(parse.java:13)

This is normally an indication that the J2VMS startup procedure,
SYS$STARTUP:J2VMS$STARTUP.COM, has not been run. When Java
loads native libraries using java.lang.System.loadLibrary it does not
search in SYS$LIBRARY like LIB$FIND_IMAGE_SYMBOL. It uses
logical names only.

3.2 java.lang.NoClassDefFoundError
This error most commonly indicates a mistake in the classpath. There
may be a mispelt filename, or a Java archive missing entirely. However,
it can also indicate a failure in vs.SystemCall when loading a routine from
a shareable image. The best action to take is to check that the shareable
image is either in SYS$SHARE or has an appropriately defined logical.

3.3 Cannot Resolve Symbol
The Java program compiled under a previous version of J2VMS. However,
since upgrading to version V1.3 or higher the Java compiler reports errors
similar to the following:

parse.java:5: cannot resolve symbol
symbol : class NAML
location: package starlet

^
parse.java:14: cannot resolve symbol
symbol : variable NAML
location: class parse

3–1

Troubleshooting

It is likely this is caused by changes in the STARLET library provided
by J2VMS. Version V1.3 and higher includes changes to the STARLET
library generator so that is is more closely inline with those provided with
native languages. To correct this, simply adjust the name of the class to
the one that includes the definition. In the case above, the definitions for
the NAML block are included in the class vs.starlet.NAM.

3–2

